PHENIX results on collective behavior in small systems from geometry-controlled experiments at

 $\sqrt{s_{NN}} = 200 \text{ GeV}$

Qiao Xu

for the PHENIX Collaboration

2017/02/08

Motivation

Does initial geometry play a role?
 RHIC geometry control experiments:change projectile/target

Motivation & Outline

Hydrodynamics predicts:

- initial state eccentricity -> final state azimuthal correlation
 - Correlation functions in p+Al, p/d/³He+Au
 - $-v_2$ in p+Al, p/d/ 3 He+Au
 - v_3 in d/ 3 He+Au
- common flow velocity
 - d+Au identified particle flow result shows mass ordering
 - identified particle flow in p/³He+Au

Small system measurements in PHENIX

- The RHIC extraordinary collection of heavy ion collisions:
 - p+Al, p+Au, d+Au, He+Au, Cu+Au, Cu+Cu, Au+Au, U+U
- Geometry engineering at RHIC!
- Midrapidity: DC, PC, TOF -> tracking and PID
- Forward: BBC, MPC, FVTX -> triggering, event selection, correlations with midrapidity particles, event plane determination

High-multiplicity triggering

- The trigger increases 0-5% most central events by 40 times in p+Au
 - by 15 times in d+Au
 - by 10 times in ³He+Au

Analysis methods

Two – particle correlation method

Pairs:
$$\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_{n}^{a}v_{n}^{b}\cos(n\Delta\phi)$$

Event plane method:

$$dN/d\phi = 1 + \sum 2v_n \cos(n(\phi - \Psi_n))$$

- Particles of interest: tracks in mid-rapidity(|η|<0.35)
- Event plane determination:
 - Using detectors at larger pseudorapidity
 - Standard flattening and re-centering procedure applied
- Three sub-events method is used to evaluate the resolution.

Inclusive Hadrons

Correlation function in small systems

Nonflow estimation in small systems

- Nonflow contribution is estimated by p+p minbias data scaled by its multiplicity
- Cited as a systematic uncertainty instead of being subtracted

Charged v, Comparison between systems

- $v_2(^3\text{HeAu}) \sim v_2(\text{dAu})$
- $\varepsilon_2^{(3)}$ HeAu) = 0.50, $\varepsilon_2^{(4)}$ (dAu) = 0.54

Charged v, Comparison between systems

Asymmetry systematics comes from nonflow effect

- $v_2(pAu) \sim v_2(pAl)$
- $\varepsilon_2(pAu) = 0.23$, $\varepsilon_2(pAl) = 0.30$

Charged v, Comparison between systems

- v₂(³HeAu) ~ v₂(dAu) > v₂(pAu) ~ v₂(pAl)
- Geometry control works!

v_2/ϵ_2 in small collision systems

The v_2/ϵ_2 in p+Au is higher than that of d+Au and 3 He+Au collisions

³He/d+Au – some events hot spots never connect and so $\varepsilon_2 \rightarrow v_2$ translation incomplete

This behavior is within the expectation of SONIC model, which includes Glauber initial geometry and viscous hydro evolution.

Charged v₂ Compared to models

- SONIC model predicts the v_2 values in all three systems
- AMPT model can predict the three systems up to 1.5GeV/c
- IPGlasma+Hydrodynamic model underpredict the p+Au results but overpredict the d/3He+Au results

v_2 and v_3 in d/ 3 He+Au collisions

- v₃ in d+Au is systematically smaller than in ³He+Au
- SONIC prediction agrees with data qualitatively

v_2 and v_3 in d/ 3 He+Au collisions

Model including pre-flow

- pre-flow makes
 the v₂ & v₃ larger
- Imply that pre-flow may not be so important at 200 GeV energy

Identified Particles

Identified particles v₂ in p/d/³He+Au

Identified particles v₂ in p/d/³He+Au

- Mass-ordering feature is observed in p+Au
- Less pronounced in p+Au than in d+Au and ³He+Au
- consistent with hydrodynamic flow (common velocity field)

by Weizhuang Peng

Identified particles v₂ between systems

 Pions and protons flow in p+Au are smaller than in d+Au and ³He+Au

Summary

- Ridge is seen in p+Al, p/d/³He+Au collisions
- •Sizable v₂ is seen in p+Al/Au, smaller than d/ ³He+Au
- •Non-zero v₃ is seen in d+Au, smaller than in ³He+Au
- Glauber + Hydrodynamics reproduces v₂ & v₃
- Eccentricity scaling understood
 - eccentricity transferred to anisotropy incomplete
- Mass ordering observed in p+Au, less obvious than in d/³He+Au

Back Up

Number of Quark Scaling in ³He+Au

 The familiar behavior of number of quark scaling observed in Au+Au collisions is also seen in the small ³He+Au system

Details of the methods

Non flow estimation method:

$$c_2^{dAu}(p_T) = c_2^{\text{Non-elem.}}(p_T) + c_2^{\text{Elem.}}(p_T)$$

$$\approx c_2^{\text{Non-elem.}}(p_T) + c_2^{pp}(p_T) \frac{\sum E_T^{pp}}{\sum E_T^{dAu}}$$

Two particle correlation Method:

- 2-particle correlation between mid-rapidity tracks and backward (Au-going) charge particles
- Separated by 2.75 units in pseudo-rapidity

$$M(\Delta\phi, p_T)$$
 : mixed event

$$S(\Delta\phi, p_T) = \frac{d(w_{\mathrm{PMT}}N_{\mathrm{Same\ event}}^{\mathrm{track}(p_T)-\mathrm{PMT}})}{d\Delta\phi},$$

$$C(\Delta \phi, p_T) = \frac{S(\Delta \phi, p_T)}{M(\Delta \phi, p_T)} \frac{\int_0^{2\pi} M(\Delta \phi, p_T) d\Delta \phi}{\int_0^{2\pi} S(\Delta \phi, p_T) d\Delta \phi}$$

Charged particles: RHIC dAu and LHC pPb

PHENIX dAu and LHC pPb results - similar v₂

Initial eccentricity in Glauber models

PRL 113, 112301 (2014)

Quark Matter 2017

Eccentricity Scaling

 3 He/d+Au – some events hot spots never connect and so $\epsilon_2 \rightarrow v_2$ translation incomplete